An Explicit Formula for Bernoulli Numbers in Terms of Stirling Numbers of the Second Kind

نویسندگان

  • Bai-Ni Guo
  • Feng Qi
چکیده

In the paper, the authors recover an explicit formula for computing Bernoulli numbers in terms of Stirling numbers of the second kind.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

A New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind

and that the Bernoulli numbers of the second kind bn for n > 0 may be generated by x ln(1+x) = ∑ ∞ n=0 bnx . In combinatorics, the signed Stirling number of the first kind s(n, k) may be defined such that the number of permutations of n elements which contain exactly k permutation cycles is the nonnegative number |s(n, k)| = (−1)s(n, k). The Bernoulli numbers of the second kind bn are also call...

متن کامل

ON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...

متن کامل

Algorithms for Bernoulli and Allied Polynomials

We investigate some algorithms that produce Bernoulli, Euler and Genocchi polynomials. We also give closed formulas for Bernoulli, Euler and Genocchi polynomials in terms of weighted Stirling numbers of the second kind, which are extensions of known formulas for Bernoulli, Euler and Genocchi numbers involving Stirling numbers of the second kind.

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014